Module agents.llm.llm

Classes

class ConversationalGraphResponse (**data: Any)
Expand source code
class ConversationalGraphResponse(BaseModel):
    """ Data model to hold Conversational Graph response data."""
    
    response_to_user:str = Field(..., description="Response to the user by agent")
    extracted_values:List[ExtractedField] = Field(default_factory=list, description="List of extracted values from the user input")
    move_forward:bool = Field(False, description="If we want to Move forward to the next state")
    reasoning:str = Field("", description="Reasoning for the response")
    chosen_branch:str = Field(None, description="Chosen branch for the move forward")
    is_off_topic:bool = Field(False, description="Is the user input off topic")
    backtrack_to_state:str = Field(None, description="Backtrack to the state")
    current_state_id:str = Field(None, description="exact state_id of current state")

Data model to hold Conversational Graph response data.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Ancestors

  • pydantic.main.BaseModel

Class variables

var backtrack_to_state : str
var chosen_branch : str
var current_state_id : str
var extracted_values : List[ExtractedField]
var is_off_topic : bool
var model_config
var move_forward : bool
var reasoning : str
var response_to_user : str
class ExtractedField (**data: Any)
Expand source code
class ExtractedField(BaseModel):
    key: str = Field(..., description="The name of the field")
    value: Union[str, int, float, bool] = Field(..., description="The value of the field")

Usage Documentation

Models

A base class for creating Pydantic models.

Attributes

__class_vars__
The names of the class variables defined on the model.
__private_attributes__
Metadata about the private attributes of the model.
__signature__
The synthesized __init__ [Signature][inspect.Signature] of the model.
__pydantic_complete__
Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__
The core schema of the model.
__pydantic_custom_init__
Whether the model has a custom __init__ function.
__pydantic_decorators__
Metadata containing the decorators defined on the model. This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
__pydantic_generic_metadata__
Metadata for generic models; contains data used for a similar purpose to args, origin, parameters in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__
Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__
The name of the post-init method for the model, if defined.
__pydantic_root_model__
Whether the model is a [RootModel][pydantic.root_model.RootModel].
__pydantic_serializer__
The pydantic-core SchemaSerializer used to dump instances of the model.
__pydantic_validator__
The pydantic-core SchemaValidator used to validate instances of the model.
__pydantic_fields__
A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects.
__pydantic_computed_fields__
A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
__pydantic_extra__
A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra] is set to 'allow'.
__pydantic_fields_set__
The names of fields explicitly set during instantiation.
__pydantic_private__
Values of private attributes set on the model instance.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Ancestors

  • pydantic.main.BaseModel

Class variables

var key : str
var model_config
var value : str | int | float | bool
class LLM
Expand source code
class LLM(EventEmitter[Literal["error"]]):
    """
    Base class for LLM implementations.
    """

    def __init__(self) -> None:
        """
        Initialize the LLM base class.
        """
        super().__init__()
        self._label = f"{type(self).__module__}.{type(self).__name__}"

    @property
    def label(self) -> str:
        """
        Get the LLM provider label.

        Returns:
            str: A string identifier for the LLM provider (e.g., "videosdk.plugins.openai.llm.OpenAILLM").
        """
        return self._label

    @abstractmethod
    async def chat(
        self,
        messages: ChatContext,
        tools: list[FunctionTool] | None = None,
        **kwargs: Any
    ) -> AsyncIterator[LLMResponse]:
        """
        Main method to interact with the LLM.

        Args:
            messages (ChatContext): The conversation context containing message history.
            tools (list[FunctionTool] | None, optional): List of available function tools for the LLM to use.
            **kwargs (Any): Additional arguments specific to the LLM provider implementation.

        Returns:
            AsyncIterator[LLMResponse]: An async iterator yielding LLMResponse objects as they're generated.

        Raises:
            NotImplementedError: This method must be implemented by subclasses.
        """
        raise NotImplementedError

    @abstractmethod
    async def cancel_current_generation(self) -> None:
        """
        Cancel the current LLM generation if active.

        Raises:
            NotImplementedError: This method must be implemented by subclasses.
        """
        # override in subclasses
        pass

    async def aclose(self) -> None:
        """
        Cleanup resources.
        """
        logger.info(f"Cleaning up LLM: {self.label}")
        
        await self.cancel_current_generation()
        
        try:
            import gc
            gc.collect()
            logger.info(f"LLM garbage collection completed: {self.label}")
        except Exception as e:
            logger.error(f"Error during LLM garbage collection: {e}")
        
        logger.info(f"LLM cleanup completed: {self.label}")

    async def __aenter__(self) -> LLM:
        """
        Async context manager entry point.
        """
        return self

    async def __aexit__(self, exc_type, exc_val, exc_tb) -> None:
        """
        Async context manager exit point.
        """
        await self.aclose()

Base class for LLM implementations.

Initialize the LLM base class.

Ancestors

Subclasses

Instance variables

prop label : str
Expand source code
@property
def label(self) -> str:
    """
    Get the LLM provider label.

    Returns:
        str: A string identifier for the LLM provider (e.g., "videosdk.plugins.openai.llm.OpenAILLM").
    """
    return self._label

Get the LLM provider label.

Returns

str
A string identifier for the LLM provider (e.g., "videosdk.plugins.openai.llm.OpenAILLM").

Methods

async def aclose(self) ‑> None
Expand source code
async def aclose(self) -> None:
    """
    Cleanup resources.
    """
    logger.info(f"Cleaning up LLM: {self.label}")
    
    await self.cancel_current_generation()
    
    try:
        import gc
        gc.collect()
        logger.info(f"LLM garbage collection completed: {self.label}")
    except Exception as e:
        logger.error(f"Error during LLM garbage collection: {e}")
    
    logger.info(f"LLM cleanup completed: {self.label}")

Cleanup resources.

async def cancel_current_generation(self) ‑> None
Expand source code
@abstractmethod
async def cancel_current_generation(self) -> None:
    """
    Cancel the current LLM generation if active.

    Raises:
        NotImplementedError: This method must be implemented by subclasses.
    """
    # override in subclasses
    pass

Cancel the current LLM generation if active.

Raises

NotImplementedError
This method must be implemented by subclasses.
async def chat(self,
messages: ChatContext,
tools: list[FunctionTool] | None = None,
**kwargs: Any) ‑> AsyncIterator[LLMResponse]
Expand source code
@abstractmethod
async def chat(
    self,
    messages: ChatContext,
    tools: list[FunctionTool] | None = None,
    **kwargs: Any
) -> AsyncIterator[LLMResponse]:
    """
    Main method to interact with the LLM.

    Args:
        messages (ChatContext): The conversation context containing message history.
        tools (list[FunctionTool] | None, optional): List of available function tools for the LLM to use.
        **kwargs (Any): Additional arguments specific to the LLM provider implementation.

    Returns:
        AsyncIterator[LLMResponse]: An async iterator yielding LLMResponse objects as they're generated.

    Raises:
        NotImplementedError: This method must be implemented by subclasses.
    """
    raise NotImplementedError

Main method to interact with the LLM.

Args

messages : ChatContext
The conversation context containing message history.
tools : list[FunctionTool] | None, optional
List of available function tools for the LLM to use.
**kwargs : Any
Additional arguments specific to the LLM provider implementation.

Returns

AsyncIterator[LLMResponse]
An async iterator yielding LLMResponse objects as they're generated.

Raises

NotImplementedError
This method must be implemented by subclasses.
class LLMResponse (**data: Any)
Expand source code
class LLMResponse(BaseModel):
    """
    Data model to hold LLM response data.

    Attributes:
        content (str): The text content generated by the LLM.
        role (ChatRole): The role of the response (typically ASSISTANT).
        metadata (Optional[dict[str, Any]]): Additional response metadata from the LLM provider.
    """
    content: str
    role: ChatRole
    metadata: Optional[dict[str, Any]] = None

Data model to hold LLM response data.

Attributes

content : str
The text content generated by the LLM.
role : ChatRole
The role of the response (typically ASSISTANT).
metadata : Optional[dict[str, Any]]
Additional response metadata from the LLM provider.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Ancestors

  • pydantic.main.BaseModel

Class variables

var content : str
var metadata : dict[str, typing.Any] | None
var model_config
var roleChatRole
class ResponseChunk (content: str, metadata: dict[str, Any] | None = None, role: str | None = None)
Expand source code
class ResponseChunk(str):
    def __new__(cls, content: str, metadata: dict[str, Any] | None = None, role: str | None = None):
        obj = super().__new__(cls, content or "")
        obj.metadata = metadata
        obj.role = role
        return obj

    @property
    def content(self) -> str:
        return str(self)

str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.str() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'.

Ancestors

  • builtins.str

Instance variables

prop content : str
Expand source code
@property
def content(self) -> str:
    return str(self)