Module videosdk.plugins.turn_detector.turn_detector_v3
Functions
def pre_download_namo_turn_v1_model(overwrite_existing: bool = False, language: str | None = None)-
Expand source code
def pre_download_namo_turn_v1_model(overwrite_existing: bool = False, language: Optional[str] = None): hf_repo = _get_hf_model_repo(language) if language is None: AutoTokenizer.from_pretrained(hf_repo) else: DistilBertTokenizer.from_pretrained(hf_repo)
Classes
class NamoTurnDetectorV1 (threshold: float = 0.7, language: str | None = None, **kwargs)-
Expand source code
class NamoTurnDetectorV1(EOU): """ A lightweight end-of-utterance detection model using VideoSDK's Namo Turn Detection v1 model. """ def __init__(self, threshold: float = 0.7, language: Optional[str] = None, **kwargs): super().__init__(threshold=threshold, **kwargs) self.language = language self.session = None self.tokenizer = None self._initialize_model() def _initialize_model(self): """Initialize the ONNX model and tokenizer""" try: import onnxruntime as ort hf_repo = _get_hf_model_repo(self.language) if self.language is None: self.tokenizer = AutoTokenizer.from_pretrained(hf_repo) self.max_length = 8192 else: self.tokenizer = DistilBertTokenizer.from_pretrained(hf_repo) self.max_length = 512 model_path = hf_hub_download(repo_id=hf_repo, filename="model_quant.onnx") self.session = ort.InferenceSession(model_path) print(f"Model loaded successfully from {hf_repo}.") except Exception as e: print(f"Error loading model: {e}") logger.error(f"Failed to initialize TurnDetection model: {e}") self.emit("error", f"Failed to initialize TurnDetection model: {str(e)}") raise def _get_last_user_message(self, chat_context: ChatContext) -> str: """ Extract the last user message from chat context. This is what we want to analyze for EOU detection. """ user_messages = [ item for item in chat_context.items if isinstance(item, ChatMessage) and item.role == ChatRole.USER ] if not user_messages: return "" last_message = user_messages[-1] content = last_message.content if isinstance(content, list): text_content = " ".join([c.text if hasattr(c, 'text') else str(c) for c in content]) else: text_content = str(content) return text_content.strip() def _chat_context_to_text(self, chat_context: ChatContext) -> str: """ Transform ChatContext to model-compatible format. Focus on the last user message for EOU detection. """ last_user_text = self._get_last_user_message(chat_context) if not last_user_text: return "" return last_user_text def detect_turn(self, sentence: str) -> float: """ Detect turn probability for the given sentence. """ try: inputs = self.tokenizer(sentence.strip(), truncation=True, max_length=self.max_length, return_tensors="np") input_dict = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"] } if "token_type_ids" in inputs: input_dict["token_type_ids"] = inputs["token_type_ids"] outputs = self.session.run(None, input_dict) logits = outputs[0][0] exp_logits = np.exp(logits - np.max(logits)) probabilities = exp_logits / np.sum(exp_logits) eou_probability = float(probabilities[1]) return eou_probability except Exception as e: print(e) logger.error(f"Error detecting turn: {e}") self.emit("error", f"Error detecting turn: {str(e)}") return 0.0 def get_eou_probability(self, chat_context: ChatContext) -> float: """ Get the probability score for end of utterance detection. """ try: sentence = self._chat_context_to_text(chat_context) if not sentence: return 0.0 return self.detect_turn(sentence) except Exception as e: logger.error(f"Error getting EOU probability: {e}") self.emit("error", f"Error getting EOU probability: {str(e)}") return 0.0 def detect_end_of_utterance(self, chat_context: ChatContext, threshold: Optional[float] = None) -> bool: """ Detect if the given chat context represents an end of utterance. """ try: effective_threshold = threshold if threshold is not None else self.threshold probability = self.get_eou_probability(chat_context) return probability >= effective_threshold except Exception as e: logger.error(f"Error in EOU detection: {e}") self.emit("error", f"Error in EOU detection: {str(e)}") return False async def aclose(self) -> None: """Cleanup ONNX model and tokenizer from memory""" logger.info("Cleaning up NamoTurnDetectorV1 model resources") if hasattr(self, 'session') and self.session is not None: try: del self.session self.session = None logger.info("Namo ONNX session cleaned up") except Exception as e: logger.error(f"Error cleaning up Namo ONNX session: {e}") if hasattr(self, 'tokenizer') and self.tokenizer is not None: try: del self.tokenizer self.tokenizer = None logger.info("Namo tokenizer cleaned up") except Exception as e: logger.error(f"Error cleaning up Namo tokenizer: {e}") self.language = None try: import gc gc.collect() logger.info("Garbage collection completed") except Exception as e: logger.error(f"Error during garbage collection: {e}") logger.info("NamoTurnDetectorV1 cleanup completed") await super().aclose()A lightweight end-of-utterance detection model using VideoSDK's Namo Turn Detection v1 model.
Ancestors
- videosdk.agents.eou.EOU
- videosdk.agents.event_emitter.EventEmitter
- typing.Generic
Methods
async def aclose(self) ‑> None-
Expand source code
async def aclose(self) -> None: """Cleanup ONNX model and tokenizer from memory""" logger.info("Cleaning up NamoTurnDetectorV1 model resources") if hasattr(self, 'session') and self.session is not None: try: del self.session self.session = None logger.info("Namo ONNX session cleaned up") except Exception as e: logger.error(f"Error cleaning up Namo ONNX session: {e}") if hasattr(self, 'tokenizer') and self.tokenizer is not None: try: del self.tokenizer self.tokenizer = None logger.info("Namo tokenizer cleaned up") except Exception as e: logger.error(f"Error cleaning up Namo tokenizer: {e}") self.language = None try: import gc gc.collect() logger.info("Garbage collection completed") except Exception as e: logger.error(f"Error during garbage collection: {e}") logger.info("NamoTurnDetectorV1 cleanup completed") await super().aclose()Cleanup ONNX model and tokenizer from memory
def detect_end_of_utterance(self,
chat_context: videosdk.agents.llm.chat_context.ChatContext,
threshold: float | None = None) ‑> bool-
Expand source code
def detect_end_of_utterance(self, chat_context: ChatContext, threshold: Optional[float] = None) -> bool: """ Detect if the given chat context represents an end of utterance. """ try: effective_threshold = threshold if threshold is not None else self.threshold probability = self.get_eou_probability(chat_context) return probability >= effective_threshold except Exception as e: logger.error(f"Error in EOU detection: {e}") self.emit("error", f"Error in EOU detection: {str(e)}") return FalseDetect if the given chat context represents an end of utterance.
def detect_turn(self, sentence: str) ‑> float-
Expand source code
def detect_turn(self, sentence: str) -> float: """ Detect turn probability for the given sentence. """ try: inputs = self.tokenizer(sentence.strip(), truncation=True, max_length=self.max_length, return_tensors="np") input_dict = { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"] } if "token_type_ids" in inputs: input_dict["token_type_ids"] = inputs["token_type_ids"] outputs = self.session.run(None, input_dict) logits = outputs[0][0] exp_logits = np.exp(logits - np.max(logits)) probabilities = exp_logits / np.sum(exp_logits) eou_probability = float(probabilities[1]) return eou_probability except Exception as e: print(e) logger.error(f"Error detecting turn: {e}") self.emit("error", f"Error detecting turn: {str(e)}") return 0.0Detect turn probability for the given sentence.
def get_eou_probability(self, chat_context: videosdk.agents.llm.chat_context.ChatContext) ‑> float-
Expand source code
def get_eou_probability(self, chat_context: ChatContext) -> float: """ Get the probability score for end of utterance detection. """ try: sentence = self._chat_context_to_text(chat_context) if not sentence: return 0.0 return self.detect_turn(sentence) except Exception as e: logger.error(f"Error getting EOU probability: {e}") self.emit("error", f"Error getting EOU probability: {str(e)}") return 0.0Get the probability score for end of utterance detection.