Google LLM
The Google LLM provider enables your agent to use Google's Gemini family of language models for text-based conversations and processing.
Installation​
Install the Google-enabled VideoSDK Agents package:
pip install "videosdk-plugins-google"
Importing​
from videosdk.plugins.google import GoogleLLM
Example Usage​
from videosdk.plugins.google import GoogleLLM
from videosdk.agents import CascadingPipeline
# Initialize the Google LLM model
llm = GoogleLLM(
model="gemini-2.0-flash-001",
# When GOOGLE_API_KEY is set in .env - DON'T pass api_key parameter
api_key="your-google-api-key",
temperature=0.7,
tool_choice="auto",
max_output_tokens=1000
)
# Add llm to cascading pipeline
pipeline = CascadingPipeline(llm=llm)
note
When using .env file for credentials, don't pass them as arguments to model instances or context objects. The SDK automatically reads environment variables, so omit api_key
and other credential parameters from your code.
Configuration Options​
model
: (str) The Google model to use (e.g.,"gemini-2.0-flash-001"
,"gemini-1.5-pro"
) (default:"gemini-2.0-flash-001"
).api_key
: (str) Your Google API key. Can also be set via theGOOGLE_API_KEY
environment variable.temperature
: (float) Sampling temperature for response randomness (default:0.7
).tool_choice
: (ToolChoice) Tool selection mode ("auto"
,"required"
,"none"
) (default:"auto"
).max_output_tokens
: (int) Maximum number of tokens in the completion response (optional).top_p
: (float) The nucleus sampling probability (optional).top_k
: (int) The top-k sampling parameter (optional).presence_penalty
: (float) Penalizes new tokens based on whether they appear in the text so far (optional).frequency_penalty
: (float) Penalizes new tokens based on their existing frequency in the text so far (optional).
Got a Question? Ask us on discord