Skip to main content

Sarvam AI STT

The Sarvam AI STT provider enables your agent to use Sarvam AI's speech-to-text models for transcription. This provider uses Voice Activity Detection (VAD) to send audio chunks for transcription after a period of silence.

Installation​

Install the Sarvam AI-enabled VideoSDK Agents package:

pip install "videosdk-plugins-sarvamai"

Importing​

from videosdk.plugins.sarvamai import SarvamAISTT

Example Usage​

from videosdk.plugins.sarvamai import SarvamAISTT
from videosdk.agents import CascadingPipeline

# Initialize the Sarvam AI STT model
stt = SarvamAISTT(
# When SARVAMAI_API_KEY is set in .env - DON'T pass api_key parameter
api_key="your-sarvam-ai-api-key",
model="saarika:v2",
language="en-IN"
)

# Add stt to cascading pipeline
pipeline = CascadingPipeline(stt=stt)
note

When using .env file for credentials, don't pass them as arguments to model instances or context objects. The SDK automatically reads environment variables, so omit api_key and other credential parameters from your code.

Configuration Options​

  • api_key: (str) Your Sarvam AI API key. Can also be set via the SARVAMAI_API_KEY environment variable.
  • model: (str) The Sarvam AI model to use (default: "saarika:v2").
  • language: (str) Language code for transcription (default: "en-IN").
  • input_sample_rate: (int) The sample rate of the audio from the source in Hz (default: 48000).
  • output_sample_rate: (int) The sample rate to which the audio is resampled before sending for transcription (default: 16000).
  • silence_threshold: (float) The normalized amplitude threshold for silence detection (default: 0.01).
  • silence_duration: (float) The duration of silence in seconds that triggers the end of a speech segment for transcription (default: 0.8).

Got a Question? Ask us on discord