Face Spoof Detection (BETA)
This API verifies if the image is original or spoofed. It returns a boolean value spoof_detected in output.
This API is available in Enterprise plan only.
HTTP Method and Endpoint​
POST | POST https://api.videosdk.live/ai/v1/face-verification/detect-spoof
Headers Parameter​
Authorization​
values : YOUR_TOKEN_WITHOUT_ANY_PREFIX
This will be a JWT token generate using VideoSDK ApiKey and Secret.
Note : the token will not include any prefix such as "Basic " or "Bearer ". Just pass a token as value.
You can generate a new token by refering this Guide: Generate Auth token
Content-Type​
values : application/json
This is usefull for json body parameters, so that VideoSDK servers can understand that the incoming body parameter will be a JSON string.
const headers = {
'Authorization': '<Your_API_TOKEN>',
'Content-Type': 'application/json'
};
Data Parameter​
Base64 Encoding Format​
The images should be converted from binary format to a Base64 string
const base64Data = Buffer.from(image).toString('base64');
Images must be Base64 encoded in the following format:
data:image/jpeg;base64,${Base64data}
Request Format​
The request body should contain two Base64-encoded images in the following format:
const data = {
img: "data:image/jpeg;base64,${Base64data}", // Base64-encoded image
};
Sending Image Comparison Request​
The request is made using the following code:
const response = await axios.post(url, data, { headers });
console.log(response.data);
This sends the encoded images to the specified URL for comparison.
Code Snippet for API Integration​
Below is a code snippet demonstrating how to use the Face Spoof Detection API (BETA) with Node.js:
import axios from "axios";
import { readFileSync } from "fs";
import path from "path";
import dotenv from "dotenv";
// Load environment variables from .env file
dotenv.config();
// Get the directory of the current file
const __dirname = path.resolve();
// Function to read image files and convert them to base64
function getBase64Image(imageName) {
const filePath = path.join(__dirname, "image", imageName);
console.log(`Resolved file path: ${filePath}`);
try {
const image = readFileSync(filePath);
const base64Data = Buffer.from(image).toString("base64");
return `data:image/jpeg;base64,${base64Data}`;
} catch (error) {
console.error(`Error reading image file: ${filePath}`, error.message);
throw error;
}
}
async function spoofDetection(spoofimg) {
const url = "https://api.videosdk.live/ai/v1/face-verification/detect-spoof";
const headers = {
Authorization: `${process.env.API_KEY}`,
"Content-Type": "application/json",
};
const data = {
img: getBase64Image(spoofimg),
};
try {
const response = await axios.post(url, data, { headers });
console.log(response.data);
} catch (error) {
console.error(
"Error during spoof detection:",
error.response ? error.response.data : error.message
);
}
}
// Main function to run the API calls
async function main() {
const spoofimg = "img.jpg";
await spoofDetection(spoofimg);
}
// Run the main function
main().catch((error) =>
console.error("Error in main function:", error.message)
);
Given below is a test run of the example.​
Input Image :

When this image is sent to the Face Spoof Detection API (BETA), the response will return a boolean value spoof_detected in output :
{
spoof_detected: true; // true if spoof detected in image else false
accuracy: 0.9899068176746368; // accuracy of spoof detection
}
Got a Question? Ask us on discord